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Abstract
Purpose – The purpose of this paper is to illustrate an original decision-support tool (DST) that aids 3PL
managers to decide on the proper warehouse management system (WMS) customization. The aim of this tool
is to address to the three main issues affecting such decision: the cost of the information sharing, the scarce
visibility of the client’s data and the uncertainty of quantifying the return from investing into a WMS feature.
Design/methodology/approach – The tool behaves as a digital twin of a WMS. In addition, it incorporates
a set of WMS’s features based both on heuristics and optimization techniques and uses simulation to perform
what-if multi-scenario analyses of alternative management scenarios. In order to validate the effectiveness
of the tool, its application to a real-world 3PL warehouse operating in the sector of biomedical products
is illustrated.
Findings – The results of a simulation campaign along an observation horizon of ten months demonstrate
how the tool supports the comparison of alternative scenarios with the as-is, thereby suggesting the most
suitable WMS customization to adopt.
Practical implications – The tool supports 3PL managers in enhancing the efficiency of the operations and
the fulfilling of the required service level, which is increasingly challenging given the large inventory mix and
the variable clients portfolio that 3PLs have to manage. Particularly, the choice of the WMS customization
that better perform with each business can be problematic, given the scarce information visibility of the
provider on the client’s processes.
Originality/value – To the author’s knowledge, this paper is among the first to address a still uncovered
gap of the warehousing literature by illustrating a DST that exploits optimization and simulation techniques
to quantify the impacts of the information availability on the warehousing operations performance. As a
second novel contribution, this tool enables to create a digital twin of a WMS and foresee the evolution of the
warehouse’s performance over time.
Keywords 3PL, WMS, Information availability, Decision-support system, Digital twin,
Warehousing operations
Paper type Research paper

1. Introduction
Third-party logistics (3PL) providers have come a long way since their dawning in 1980s.
The types of services that companies entrusted to 3PL providers were limited to transport
and storage operations. In the last decades, with the increasing trend to outsourcing, the Industrial Management & Data
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offer of value-added logistic services has grown (Langley, 2015; Shi et al., 2016; Large et al.,
2011). These services widen the business opportunities for 3PL providers but require
continuous review of the provided processes to meet the clients’ requirements. Particularly
in warehousing operations, enhancing efficiency and service level is increasingly
challenging given the large inventory mix and the need to manage many clients
simultaneously (Hilmola and Lorentz, 2011).

The warehousing operations are generally aided by the warehouse management
system (WMS). This enterprise resource planning (ERP) module controls the flows of
goods and information as well as the personnel tasks, supervising the operations
within a warehouse (Ramaa et al., 2012). The introduction of WMSs at the different
levels of a supply chain facilitates the creation of information infrastructures that
enterprises exploit even in procurement, production, storage and distribution activities
(Tan, 2009).

In view of this, an increasing number of 3PL providers are investing in WMSs. The
19th annual report on the logistics outsourcing (Langley, 2015) shows that the 58 percent
of companies have already purchased a WMS and the 33 percent have invested in
WMS customization (e.g. functionalities for the labor management, analytics).
Nevertheless, among the jungle bid of WMSs that sees hundreds of standardized
solutions, the identification of the most suitable WMS customization for each specific
business is challenging.

This choice is further complicated by the scarce information availability along the
supply chain (Selviaridis and Spring, 2007; Karagiannaki et al., 2011), which affects the
visibility on the operations to be managed. Although the crucial role of the information in
operations management is unanimously stated (Cantor and Macdonald, 2009; Mandal and
Bagchi, 2016; Ruel et al., 2017), the 3PL providers usually make decisions with partial
visibility on the client’s processes, especially during the tender of new clients. The
competition among 3PL providers and the high turnover in their clients’ portfolio reduce the
opportunity for long-standing and trustworthy partnerships, and discourage data and
information sharing. The schedule of the incoming trucks, the loads of these trucks, the
changes in the inventory mix, and the orders forecasts are examples of this unknown
information (Accorsi et al., 2018a).

Three main issues in the design of WMS motivate this paper:

• Issue 1 – costs of information technologies (IT). Both scientific literature and
industrial practice highlight the positive effects of IT on the 3PL provider’s
performance (Evangelista et al., 2012). Nevertheless, four cost drivers should be taken
into account (Chen and Tsou, 2007): the IT infrastructure, the alignment between the
IT and the business strategies, the re-organization of the organigram and the
communication procedures (e.g. activities coordination, communication rules,
procedures) to meet the IT capabilities, the workers training.

• Issue 2 – partial information availability. The lack of visibility on the characteristics
of the inventory (e.g. weight, volume, safe conservation conditions per each stock-
keeping-unit SKU) or the clients’ targets (e.g. demand forecast, products life cycle)
limit the benefits resulting by a WMS.

• Issue 3 – uncertainty on the benefits. The long-term benefits resulting from the
implementation of a WMS feature are hard to be predicted because of the level of
achievable customization and the unexpected changes in the business operational
conditions. This often discourages the 3PL providers to invest in WMS’s features.

This paper aims to support the 3PL managers to design the proper WMS customization. To
this purpose, we illustrate a decision-support tool (DST), named Store Simulator, that is
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intended to address Issue 3 in the first place. Particularly, the proposed tool is able to assess
the long-term impacts resulting by implementing a WMS feature on a set of economic and
logistic KPIs. Moreover, a second aim of this tool is to study and compare the effects of
higher information availability on the warehouse performances, therefore addressing to
Issue 2. For these reasons, we retain Store Simulator provides a valuable support to the
investments assessment in the WMS design and customization, under the constraint
derived by Issue 1.

The remainder of the paper is organized as follows. Section 2 illustrates the research
background and the state-of-art of the literature. Section 3 introduces the approach of
analysis and illustrates the architecture of the DST. Section 4 introduces the tool
functionalities that virtualize the WMS features. Section 5 presents how the proposed tool
performs in a 3PL provider warehousing system for pharmaceutical products, that
represents the testbed for a what-if multi-scenario analysis. Section 6 discusses the paper
results. Finally, Section 7 summarizes the conclusions and sets the goals for future
developments.

2. Literature review
The WMS is a management information system that controls the physical and
informative flows within the warehouse, involving both inbound and outbound processes
(Shiau and Lee, 2010). A WMS gathers, stores and provides information on products,
resources and processes, recording the transactions and transferring them to other
modules of the company’s ERP (Verwijmeren, 2004). Some technologies as Auto-ID Data
Capturing or Radio-frequency identification may be integrated to support the data
collection (Ramaa et al., 2012). Faber and De Koster (2002) list the advantages from the
introduction of a WMS: better space utilization, more accurate inventory, productivity
increase and enhancement of the number and quality of services offered to clients. They
even distinguish between Basic WMS and Complex WMS, which manages a network of
warehouses, implementing integrated inventory management and picking policies.
Furthermore, a Complex WMS offers value-added functionalities as data-driven planning,
traceability, dock allocation, automated process supervision and control (automated
guided vehicles or automated storage and retrieval system) (Roodbergen and Vis, 2009).
Both practitioners and researchers recognize the role of the WMS in improving the
warehouse performance (Faber et al., 2013; Lam et al., 2010; Staudt et al., 2015). Tan (2009)
and Shim et al. (2002) underline how the selection of the proper WMS features is crucial for
a 3PL provider which operates with several clients and different items by characteristics
and turnover.

The commercial offer of WMSs includes a wide variety of solutions. Harris (2016)
overviews the WMS’s features proposed by the top vendors and software houses.
He classifies these features into seven modules according to their purpose and function.
Figure 1 shows the relationship between each module and the physical flows of products
throughout a warehouse (extendedly referenced in Bartholdi and Hackman, 2013;
Gu et al., 2007).

A brief description of the operations involving these flows is given in Table I.
The purpose of selecting the set of features of a WMS has been already debated by

Giannikas et al. (2013) which identify two decision drivers: the flexibility, i.e. reacting
quickly to changes in customers demand and the adaptability, i.e. maintaining high service
level when customers’ requirements change. They also argue that the partial visibility on
the processes bounds the level of reachable performance in the warehouse operations.
Kearns and Lederer (2003) show the role of data sharing in strengthening and improving the
operations between companies in the supply chain. Others accounts the related impacts on
the bullwhip effect (Lee et al., 1997; Cantor and Macdonald, 2009) and state how the upgrade
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of ERPs and WMSs make companies more responsive to the changes of the customers’
demand (Sambamurthy et al., 2003; Comuzzi and Parhizkar, 2017).

Unfortunately, 3PL providers usually face the partial visibility on their clients’
operations, on the products characteristics, on the variation of the turnover or the inventory
mix. This limits the implementation of the so-called product intelligence paradigm in the
3PL warehousing operations (McFarlane et al., 2013; Lu et al., 2013). This paradigm exploits
the interdependency between a physical entity (e.g. a product) and its informative content
(Meyer et al., 2009). For example, the use of some metrics (e.g. COI defined by Haskett, 1963),
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Figure 1.
The warehouse
operations and the
associated WMS
management modules

Operation Description WMS module

Receiving The incoming loads (i.e. pallets) are unloaded,
checked, tracked in the system and prepared for
put-away activities

Barcode reading/printing
Yard management: doors allocation, arrival
scheduling

Put-away The loads are stored into the racks or assigned to
a physical location within the storage system
The loads can be stored into the reserve area or
directly to the forward (picking) area
A careful put-away reduces significantly the
traveling during the retrieving activities (i.e. 55
percent of total warehouse costs)

Storage assignment: how to assign loads to the
empty locations
Replenishing policy: how to re-fill the forward
area from the reserve

Picking In response to the customer orders, picking lists
are generated and devoted to the operators to
perform the retrieving activities

Picking tour optimization (Picking list
management)
Inventory control
Retrieving policy management: FIFO, LIFO,
FEFO, FMFO (first-empty-first-out)

Sorting
Packing
Shipping

These include the loads preparation and the
checkout activities. These activities are
extremely labor-intensive since requires accurate
control to avoid claims or back-orders

Shipping documentation printing
Aided packing and cartonization: loading
sequence suggestion
Labor management

Table I.
Warehouse operations
description (for further
details see [30, 43,
45-47])
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contributes to reduce the traveling for picking (Chan and Chan, 2011), but needs a set of
information provided by the client, as the unit volume of the products and the number of
orders (De Koster et al., 2007).

In conclusion, a WMS provides knowledge and enables the improvement of the performance
of the warehousing operations but requires input data, whose collection is constrained by
several exogenous factors and is expensive. To avoid the “dog-chasing-its-own-tail” problem, the
3PL operations manager should consider carefully the adoption of aWMS and its customization
in the view of the achievable benefits.

To the best of our knowledge, this paper addresses a still uncovered gap of the
warehousing literature by illustrating a DST that exploits optimization and simulation
techniques to quantify the impacts of the information availability on the performance of the
warehousing operations, supporting decision making on the WMS features and
customization. The tool allows to foresee the impacts of such choices on the warehouse
performance over a time horizon, according to an approach already explored in the field of
block-storage systems (Accorsi et al., 2017). Since this tool virtualizes the dynamic behavior
of a storage system, it behaves as a digital twin of a WMS (Grieves, 2014). In warehousing
systems, a digital twin can be used to foresee the mid-term benefits of given logistics and
operations decisions, thereby addressing to Issue 3. While digital twins are widely used in
other sectors, such as aeronautics and mechatronics since the advent of the Industry 4.0 era
(Tao et al., 2018), to the authors’ knowledge this is the first attempt in warehouse science.

Furthermore, it extends the limitations of the tool illustrated by Accorsi et al. (2014). This
was intended to aid the design and management of effective storage systems from green
field, and for the investigation on how to combine storage allocation and assignment policies
in an existing facility with dedicated storage locations. Dedicated storage is indeed not
suitable in 3PL warehouses, since the inventory mix changes continuously with demand
seasonality and the clients’ portfolio.

Simulation allows to study complex systems in an affordable way, by developing a
model that replicates the behavior of the observed system and by varying the input
parameters to evaluate the responses (Manzini et al., 2005). Chan and Chan (2010) encourage
the use of simulation to study the impact of the information sharing on the entire supply
chains, and Dorigatti et al. (2016) propose a framework based on simulation to assess the
benefits from collaboration and information visibility. Fleisch and Tellkamp (2005) use
simulation to study the level of visibility on the inventory along the entire supply chain,
while Ramanathan (2014) tests the impacts of supply chain collaborations.

The challenge of developing tools that reproduce the behavior of non-automated
warehouses is widely recognized by the literature (Cagliano et al., 2011), and few are the
contributions on this topic. Table II shortlists some of these over the past two decades. It is
worth noting how some scholars began exploring this topic quite early, while recent
attempts are rare. The table classifies the tool with respect to the involved processes, the set
of decision levers, the types of storage system (i.e. OPS or unit load warehouse), the tool
scopes (i.e. the warehouse design or operations management), the measured performance
indicators, the approach used in what-if multi-scenario analyses, the use of real input data
and, lastly, the use of object-oriented programming languages. The check states if the
contribution presents the specific characteristics, while the acronym “NS” indicates whether
it is not specified in the text.

With respect to the other contributions, this paper focuses on the impact of information
visibility on the warehousing operations. The proposed tool quantifies multiple KPIs related
to the receiving, the put-away, the storage, the picking processes, instead a single metric of a
single process (Chen et al., 2010), and involves the interdependencies between the storage
and picking policies within a multiple-level order-picking system. In addition, a great deal of
attention is devoted to data collection to enhance the robustness of the results in accordance
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with the real-world instance. However, the main contribution presented by our DST regards
the opportunity to foresee the evolution of the warehouse performance over time, behaving
as a digital twin of the company’s WMS. The building of the multi-scenario analysis is,
therefore, obtained as a result of a combination of logistic choices (i.e. setting-based multi-
scenario analysis), whose impact can be evaluated day-by-day (time-based multi-scenario
analysis). Lastly, it is worth noting how the DST includes the opportunity to deal with
several inbound decisions as the put-away policy to implement or the capacity of the staging
area, i.e. buffer where to unload trucks and prepare the incoming unit loads for storage.

3. The decision-support tool
The DST manipulates a historical data set representing the available knowledge on the
warehousing operations and simulates the behavior of the storage system over a given
horizon (e.g. a year) according to the alternative WMS features and capabilities. These
features control and affect the behavior of the warehouse. A set of features results in a
specific release of the WMS (i.e. a management scenario). Thus, different sets correspond to
multiple to-be scenarios. The to-be scenarios are compared with the benchmark (i.e. the as-is
or current scenario) through a panel of performance indicators (i.e. traveling for picking,
utilization of locations) which enables to identify the most performing management
scenario. The implemented WMS’s features include the management of both put-away and
picking operations (see Table I), which together account for the 70 percent of the total
operating costs (Bartholdi and Hackman, 2013).

Figure 2 shows the conceptual framework of the proposed tool, where the main functions
are outlined through the use of pseudocode. These will be further explored at Section 4.2.

Framework of the progressive-adapting methodology implemented in the DST
(a) Import settings:
Buffer capacity: b
Step: m
Period (a day): t
Replenishing time: tr where j is the last tr in t 
Simulation Periods: T 
Assignment policy: k
Retrieving policy: n
Inventory snapshot: str, t
Unit load=u
Orders=o
Picklines=pl

(b) Import Data: import data from the database

(c) Simulation

while (t�T ){

Set str =1, t = str= j, t–1

Set Lunitload
t
 as the list of incoming unit loads u in t

Calculate poproll
u, t, m

 for each u in t according to m

Set Lorders
t
imp as the imported list of orders o in t

Set L pickline
o, pl

imp as the imported list of pick line pl in o

{

Perform the picking process according to n
Produce str, t

Produce Lorders
t, tr

sim as the simulated list of orders in t in (t
r–1,

 t
r
)

Set Lorders
t 

sim as the simulated list of orders o in t

Solve the assignment problem according to k
Perform the put-away process
Update str, t

(d) Print results in the database

Print Results (d)

Calculate pop
roll

t=Tt= t+1

(a) Import Settings 
(b) Import Data

Put-away Process 

Str= j, t

Picking Process (c)

tr= j

tr= tr+1

Solve assignment 
problem

(c)

}

  }

}

for each tr 

Figure 2.
Conceptual framework

of the DSS
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The proposed tool implements two key patterns described in the following:

(1) Progressive adaptation: starting from an initial inventory collecting the stored
volume per each SKU, this tool progressively adapts to the introduction of new
WMS features. Thus, the configuration of the storage system evolves during the day
(i.e. within time batches called replenishing time), and along a time horizon
according to inbound lines (i.e. incoming loads), the available empty locations, and
the chosen management policy (i.e. that is the object of analysis). The replenishing
time tr is a batch within the day (e.g. 12:00–18:00—20:00) that decouples put-away
from picking activities, and represents the instant when the inventory configuration
is updated in the WMS. As a consequence, the inventory configuration at tr is a
combination of original frames (i.e. locations and held SKUs not yet visited) and
adapted frames made by the storage locations visited at least once according to the
selected management scenario (i.e. WMS’s features). The adaptation of the storage
system to a given WMS’s feature is pursued progressively, at a ratio that depends
by the average inventory’s turnover.

(2) Adaptive assignment: in presence of variable demand the warehouse is the buffer
that protects from stock-out and from bullwhip effects throughout the supply chain
(Yingde and Smith, 2012). In such an environment, a storage assignment policy
(i.e. the rule that assigns an incoming load to a location) built on a punctual
time-dependent metric (e.g. popularity, turnover) is misleading. To avoid this
problem, this tool implements an adaptive assignment approach (Chiang et al., 2011)
that exploits the historical data set to assess the dynamic behavior of a SKU (e.g.
demand trend) and assigns it to a location accordingly. The time horizon considered
for the assessment of the SKU’s behavior is called step.

In order to implement the adaptive assignment, we use the rolling popularity metric as
illustrated by Manzini et al. (2015) (see Figure 2). It is calculated in Equation 1 per each SKU i at
period t as the number of pick lines cumulated within the previous time batch Δt, i.e. the step:

Poprolli;Dt tð Þ ¼
Xt�1

t�Dt

Popi tð Þ; (1)

where i is the SKU, Δt is the step (e.g. a week, a month expressed in term of periods).
Furthermore, the tool framework is built upon three basic assumptions. First, the flow of

loads is one-directional, from inbound to outbound. Re-locating flows (i.e. SKUs moved
among locations) are not allowed. Second, each storage location is single SKU and all the
locations are devoted to picking (i.e. multi-level picking). Once a pallet of a generic SKU i is
assigned to an empty location l, this remains occupied until the whole stock is retrieved.
Third, the pallet received at day t is stored in day t and retrieving is allowed from day t+1
(see Figure 2).

4. Tool design and functionalities
According to Power and Sharda (2007), the proposed DST is classified as a model-driven
decision-support system. Its architecture is made of multiple patterns for the simulation of
the warehousing operations. The DST implements and solves even optimization problems
for the storage assignment. Particularly, it can be interfaced with a generic commercial
solver (e.g. Gurobi) for linear or multi-objective models that are written in AMPL. Store
Simulator is written in C#. NET, using LINQ libraries, and is connected to a relational SQL
database, which is described in the following sub-section. The DST is intended for
users with poor informatics skills. Two user-friendly graphical user interfaces (GUIs)
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are developed and illustrated below. The proposed tool is highly customizable and
can quickly incorporate new management scenarios (i.e. WMS’s features) to be tested
and assessed.

4.1 Database description
The designed database is inspired to the typical WMS’s data architecture and tracks the
warehouse’s inbound and the outbound operations within a given horizon. The tables
include required and auxiliary ones. The first set tracks the essential information that draws
the storage system, the inbound flows, the demand orders. The auxiliary tables are involved
case by case depending on the WMS’s feature to be assessed. Table III further describes the
characteristics of each table.

Both required and auxiliary tables are oorganized in the entity-relational diagram of
Figure 3, which underlines the connection between input and output tables.

4.2 Simulation settings and graphic user interfaces
Two GUIs enable setting the simulation parameters and visualizing the KPIs resulting by
each management scenario. Figure 4 summarizes the levers of analysis manageable through
the GUIs and provides an exemplifying set of settings.

The first lever is the aforementioned replenishing time tr. This reflects the typical work
flow of the warehouse, as the working shifts, or the distribution of the truck arrivals over the
day. High-frequency replenishing requires at least one (in small warehouse) operator
entirely devoted to put-away activity. Low frequency replenishing concentrates put-away in
a specific, generally longer, time batch.

Input tables Data

Mandatory
SKU The SKUs’ characteristics (e.g. SKU code, description, volume, weight, labeled

temperature standard)
OrderList The historical demand orders and the associated picking tours: date and time of the

pick, SKU code and lot code, order code and picked quantity
Inventory The initial inventory snapshot that reports per each SKU the cartons stored per location
InboundList The historical records of the incoming unit loads, including the list of SKUs per

pallet, the arrival time and the truck code
Location The characteristics of the storage locations (e.g. distance from the I/O dock)
WH Information on the warehouse, e.g. location, sizes and the number of aisles and bays

Auxiliary
Temperature Indoor temperature per unit time (e.g. hour, minute) within a selected period of time

(e.g. a month, a year)
Weather Outdoor temperature values (maximum, minimum) and humidity recorded during

each day of the simulation

Output tables Data

Mandatory
SimulationOrderList The picks list resulting from the simulation. This table has the same structure of

ORDERLIST
SimulationSettings Summarizes the user choices and the simulation settings
SimulationInventory Inventory snapshot taken during each day of the simulation
SimulationStockBuffer The list of pallets queued in the pre-storage buffer (i.e. inbound docks)

Auxiliary
SimulationResults Value of the objective functions used in the optimization of the assignment process
SimulationSolver Results of the algorithm for the selection of the trade-off solution of the multi-objective

optimization problem
Table III.

The database tables
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The capacity of the inbound buffer b is another lever of analysis. When, at time tr, the empty
locations are less than the incoming pallets the DST temporarily assigns the remaining
loads to the buffer. The buffer is indeed the floor storage area placed at the inbound dock
where the trucks are unloaded and the pallets wait for put-away. The larger the buffer
capacity b, the less the storage volume utilization will be. Nevertheless, a larger buffer
enables holding the incoming SKUs until adequate storage locations are again available. In
view of this, the manager should carefully handle the relationship between the replenishing
time and the buffer capacity.

The aforementioned step Δt, measured in periods (e.g. days), is a key driver of analysis. It
represents the time batch used to quantify the dynamic behavior of a SKU and organize the
storage assignment policy accordingly. Usually, the average turnover of a warehouse is a
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fair value to quantify this step. High values of step compared to the inventory turnover (e.g.
1 or 2 months) flatten the differences among the SKUs and smooth the seasonality.
Conversely, short values (e.g. 1 day) may not reflect the erratic behavior of a SKU.

The storage assignment policy k is the rule to assign an incoming pallet to a storage
location. The DST incorporates a wide set of assignment policies to cope with different 3PL
companies and business. These base either on a sorting algorithm (i.e. ranking heuristics)
(see for details Accorsi et al., 2012), or on optimization techniques. The former, generally
implemented through SQL scripts, are easier and require usually cheaper WMS’s
customization. The latter are more performant, but require a commercial linear solver,
whose annual fee is expensive for low-margin business as 3PL, and also advanced
mathematical and informatics skills generating higher software maintenance costs.

Through the DST, the user also decides for the picking policy to pursue. The fulfillment
of the customers’ orders requires the punctual analysis of the inventory configuration, in
order to figure out where each SKU is located. Different picking policies generate different
picking lists and consequently different configuration of inventory and empty locations. As
example, a policy favors the minimization of the traveling for the picking tour (i.e. retrieving
a SKU from the locations closer to the docks), another favors the emptying of the storage
locations (i.e. retrieving a SKU from the locations with least residual stock), which
particularly fits with 3PL companies that sell pallets locations to their clients. The developed
GUIs are shown in Figure 5.

5. Proof of concept with a real-world warehouse
In order to showcase the DST’s functionalities, this section illustrates its application to
decide on the customization of the WMS for 3PL warehouse involved in the supply chain of
biomedical products and devices. Given the wide inventory mix to manage and the
reluctance of the clients in sharing information on the products, this case represents a valid
testbed for the validation of the DST. In order to provide the input data set required by the
tool, a prior extensive phase of data collection has been conducted. Data were collected
through on-field observation and monitoring of the workers’ tasks, but mostly by extracting
and manipulating records from the company WMS.
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The following sub-sections illustrate the main characteristics of this warehouse, and
describe how the tool functionalities are used to perform a what-if multi-scenario analysis
considering alternative WMS features.

5.1 Problem statement
We analyze a middle-sized warehouse of 5,088 locations devoted to products and equipment
for dialysis of a renowned vendor of this sector. Figure 6 reports the main characteristics of
the storage system (i.e. as-is scenario), including data on the storage infrastructure (i.e.
racks) and the processes, the level of information visibility, and the as-is WMS’s features.

Figure 5.
Graphic users
interfaces (GUIs)

WMS functionalitiesWarehouse

Warehouse characteristics

• Picking process: WMS produces automatically the picks list according to
  the FEFO policy. Pick lines are ordered with respect to the shorter path and
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  shifts
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We consider an historical profile of about ten months (from March to December). The
warehouse experiences high turnover and presents a wide variety of perishable products in
the inventory mix. More than 700 SKUs are stored in the selective racks with an average
turnover index of about 60 days. Despite the long-term partnership with the client, the
provider has scarce information visibility on the variation of inventory mix. This
complicates the planning of the warehousing activities and affects the fulfillment of the high
standards of efficiency and service level required. The as-is put-away process is randomly
performed by the workers who assign the incoming pallets to the first empty location they
find. The random assignment policy does not require specific information about the SKUs
and their behavior and avoids the costs for implementing dedicated WMS’s functionalities.
Nevertheless, given the typical high utilization of the locations in 3PL warehouses, the time
spent for searching empty locations is not negligible. Furthermore, this policy locates
fast-moving SKUs even far from the I/O dock, enhancing the traveling time for picking.

Based on these statements, seven alternative management scenarios, likewise replicating
different WMS features, have been simulated and compared to the as-is upon the
performance of the picking activities (i.e. Traveling time). The analysis aims to identify the
best management scenario and to aid the managers in assessing and quantifying the
economic return from the WMS customization according to higher information visibility. It
is worth noting that, among the wide set of warehousing KPIs, we assume the traveling time
for picking as metric of performance since generally, the picking accounts for more than 55
percent of the whole warehousing costs (Bartholdi and Hackman, 2013).

Furthermore, each management scenario differs from the others for the level of the
information availability as indicated in Table IV.

The what-if simulation analysis is conducted in agreement with a basic assumption: the
demand orders and the trucks arrival are known at the beginning of each period (day) t.
All the tested management scenarios share the settings of the buffer capacity (i.e. 150
pallets), of the step (i.e. 90 days), and of the replenishing times tr (i.e. three per day at 11:00
a.m., 12:00 a.m., and 9:00 p.m.). They differ for the adopted storage assignment policy and
the picking policy. Many researches and industrial applications demonstrate that the
popularity-based assignment is an effective rule to reduce the picking traveling time
(Thomas and Meller, 2015; Heragu et al., 2007; Petersen and Aase, 2004; Tompkins and
Smith, 1998; Wilson, 1977). For the first, three storage assignment policies based on the
popularity index (Gu et al., 2007) are thereby investigated. These are as follows: (k¼ 1) a
popularity-based rule, named in the following heuristic, (k¼ 2) a class-based optimization
model based on the popularity parameter, and (k¼ 3) a bi-objective optimization model
based on popularity and conservation temperature parameters, that aims at minimizing the
temperature stresses during storage for the most sensitive SKUs.

For the second lever, two solutions are compared: the first-in-first-out (FIFO) and first-
expiring-first-out (FEFO) policies that are commonly recommended to control the shelf-life
of perishable products (Hertog et al., 2014).

5.2 Tool functionalities
Per each period t, and replenishing time tr, the tool calculates the rolling popularity Poprollui ;t;Dt
for the set of incoming SKUs Lul

tr ; t and implements the three alternative storage assignment
policies (k: 1, 2, 3) as schematized in Figure 7.

The heuristic ranks the list of incoming SKUs ðLulrnk
tr ; t Þ by the popularity rolling value and

assigns them to the empty locations ðLelrnk
tr ; t Þ sorted by their distance from the I/O dock dlI=O.

At each replenishing time tr, the sorted lists SKUs and locations are matched, and the
locations filled accordingly (i.e. SKUs with higher popularity rolling in the closer locations).
The sorting process can be constrained by some parameters as the weight or the volume of
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Simulation
code

Simulation settings:
common Simulation settings: specific Required information
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3 Storage assignment technique:
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4 Storage assignment technique:
heuristic
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5 Storage assignment technique:
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the pallet, and the available location filtered accordingly. In this case, the tool implements
also a weight constrained heuristic.

Two optimization models for the assignment problem are formulated and solved. The
first linear integer model assigns a generic SKU of popularity class cPopui to a generic location
of storage class c

dI=O
l (i.e. built upon the distance from I/O dock dI=O) with the objective of

minimizing the number of pallets stored out-of-their-class. As result, a unit load uiof generic
SKU i belonging to the first popularity class ðcPopul ¼ 1Þ is assigned (i.e. xui ;l;tr ¼ 1) to an
empty location l belonging to the first storage class ðcdI=Ol ¼ 1Þ whether available at time tr.

The second assignment problem is formulated through a bi-objective optimization model
that combines the first objective with the minimization of the temperature stresses
experienced by the stock. The second objective function considers the temperature
measured within the storage system and requires thus other information (as indicated in
Table IV ). These are the outdoor and indoor temperatures measured at every storage
location l during a time horizon obtained by a thermal monitoring campaign (see Table III).
The associated WMS’s feature manipulates the temperature records to identify the highest
stress (Tstress) (3) that an incoming pallet ui experiences during its average turnover (2).
Then, the tool uses linear regression (4) to estimate the temperature achieved by each
location in the worst case (Tstress) during the observed time horizon. Since each SKU has a
safe temperature conservation range, optimization minimizes the number of pallets located
out-of-their-safety-class (4). The tool solves the bi-objective assignment problem and obtains
the trade-off solutions once the Pareto frontier is drawn through the ε-constrained method
(Khalili-Damghani et al., 2012) (5). A properly developed algorithm is then applied to obtain
the best assignment solution among the Pareto points (6). Since the bi-objective formulation
and its associated solving algorithm represent just an alternative management scenario,
their formal and rigorous definition and description are not object of this paper, which
conversely illustrates a tool for the comparison and assessment of multiple warehouse
management scenarios. The bi-objective formulation is extendedly proposed and discussed
in Accorsi et al. (2018b).

The computation time to assess each scenario varies with the assignment policy and the
observed time horizon. Obviously, this time is higher for the optimization techniques than
for the heuristics. Each run of the solver (i.e. one per replenishing time tr and period t and
more in case of the bi-objective problem) takes few seconds (between 1 and 5 seconds). This
time is the same that the WMS feature would require in a real application, and allows
understanding the feature responsiveness to the operational tasks.

5.3 Results
The what-if simulation analysis quantifies a set of KPIs that allows the assessment of
management scenarios. This panel includes the overall traveling distance for picking, the
average warehouse utilization percentage, the buffer utilization, the average pick lines per
day, and whether or not the temperature stresses affect the management scenario. It comes
out that all the to-be scenarios reduce the traveling time for picking compared to the as-is
(see Figure 8).

The scenarios characterized by the FEFO picking policy (i.e. scenarios 4, 5 and 6) better
perform in term of traveling reduction than those ruled by the FIFO policy (i.e. scenarios 1, 2
and 3). The scenario 4 implements the heuristic-driven storage assignment and obtains the
highest traveling saving. Nevertheless, the FEFO-based scenarios require additional details
from the client, which must track the expiration date of each pallet. On the contrary, the
FIFO-based scenarios guarantee good performances requiring just the records of truck’s
arrival. Notwithstanding with the convenience for the 3PL provider, the picking policy is
often negotiated with the client and is influenced by the sector, the demand seasonality, the
products’ turnover, the characteristics of the inventory mix and the information availability.
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Dealing with the comparison between the storage assignment policies, the saving in the
picking traveling decreases from the heuristic to the bi-objective policy, while the buffer
utilization increases. Indeed, the scenarios 2, 3, 5 and 6 utilize the buffer for more days than
the scenarios 1 and 4. This leads to two considerations. First, the optimization technique
exploits the buffer to organize (and eventually postpone) the put-away activities for
assigning each SKU to its proper storage class. Second, the capacity of the buffer (i.e. the
floor storage area besides the docks) has to be accurately designed, since it affects the
assignment process and the resulting storage configurations. In response to the input data
set and the simulated inbound and outbound profiles, the optimization policy is not
convenient as expected, and its implementation as WMS’s feature is not recommended.

Although the scenarios 3 and 6 account for higher traveling distance, the bi-objective
assignment policy better complies with the safe storage temperature requirements.
Nevertheless, the adoption of this WMS feature compels the visibility of the provider on the
safe temperature ranges of each SKU.

Lastly, the scenario 7 represents the worst case in term of traveling minimization.
Nevertheless, it allows to comply with the work safety standards that recommend to store
the heavy loads at the bottom (i.e. low levels) of the racks.

Figure 9 focuses on the monthly trend of the average traveling time per pick line for each
scenario. This is a well-known metric of performance for 3PL providers, since the clients
commonly pay the storage service in terms of fulfilled lines.

It is worth noting that a significant difference between the worst and the best scenarios is
quantified. This changes month by month and achieves four seconds and half per line at
Month 7. Such a saving is multiplied for the monthly number of lines and results in about
6–7 percent reduction of the required labor time. The obtained result aids the 3PL managers
to quantify the return on investment of each management scenario in comparison with the
as-is, and to evaluate the payback of the associated WMS customization.

The bottom chart of Figure 9 highlights how the number of fulfilled pick lines slightly
varies scenario by scenario over the time horizon. This is caused by the combination of the
storage assignment and picking policy which might affect, and sometimes double, the
number of locations to visit for fulfilling a pick line. As a consequence, the operators could
save time to perform other activities as put-away, replenishment, stock consolidation,
cycle-counting, thereby increasing the overall warehouse throughput and efficiency.

Some last considerations arise by observing Figure 10, which illustrates the multi-
scenario comparison of the storage layout bird’s views, as appear at the last period t of the
time horizon (i.e. ten months). The three-dimensional layouts have been obtained through a
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script written in AutoLISP and a developed interface through the AutoCAD® Software that
is included into the DST. This comparison highlights how the scenarios (i.e. 1 and 4) that
reduce the picking traveling the most, assign the fast-moving SKUs (i.e. the darkest unit
loads) to the lowest levels of the rack and close to the I/O docks. The heuristics performs
better than both the optimization policies, while the constrained-heuristics is affected by the
weight of the incoming unit loads and is the worst performing. This result can be influenced
by the distribution of the truck arrivals along the day, and the number and type of incoming
unit loads ui received by each truck.

Furthermore, the comparison underlines the complexity faced by a manager in
understanding and foreseeing the dynamic behavior of a combination of storage and
picking policies over the time. After ten months different daily management scenarios result
in extremely different storage configurations, and this reflects the uncertainty of the
managers to decide on the implementation of a specific WMS’s feature.

6. Discussion
Through the DST, managers observe the variation of the warehouse performance over the
time in order to assess how different scenarios respond to variation in the demand and the
inventory mix. By implementing a dynamic and adaptive approach, this tool extends the
contribution by Accorsi et al. (2014), which was intended to design a warehouse from green
field, and to support the re-warehousing through a combination of storage allocation and
assignment rules. For these reasons, we believe that the proposed DST contributes both to
the literature and to the industrial practice. As stated in Section 2, the DST addresses to an
extant gap providing a digital twin of the WMS able to virtualize the warehouse behavior in
case of potential changes in the operations management. In other words, it tests the
responsiveness and resilience of the management policies to the inventory mix variations
and demand seasonality over time.

Ample opportunities exist for the development of new functionalities to explore other
research topics concerning the impact of supply chain issues on the warehouse performance.
Among these: the delivery policies (Accorsi et al., 2018a), promotional campaigns, and the
variations in the clients’ portfolio.

Furthermore, we retain that this DST provides a valuable support to 3PL warehouse’s
managers in the decision making on how to address to specific instances from clients.
Specifically, the main contribution to practitioners involves the opportunity of exploring the
evolution of the inventory over a time horizon. As it is shown in Figure 11, this tool provides
detailed inventory snapshots over time with an accuracy of a replenishing time.

However, two main limitations have to be claimed. First, the tool bases on specific data
architecture that need to be fueled by precise data. The more precise the data set, the more
reliable the decisions resulting from the analysis will be. As a consequence, the 3PL
company has to involve their clients on an overall and long-term project of data gathering
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and sharing. Second, a logistic specialist is required to design and propose the alternative
WMS’s features to try, as well as to interpret the results. Therefore, we retain that the
development of further interfaces between the DST and the company ERP would facilitate
the data import and the interaction with the managers’ decision making.

7. Conclusion
This paper illustrates an original DST, named Store Simulator, which aids a 3PL manager to
decide on the WMS’s feature to implement in order to meet the client’s requirements. This tool
utilizes heuristics, optimization, and simulation techniques to virtualize the behavior of a
specific storage or picking policy and assesses the short and mid-term impacts resulting by
the implementation of that WMS’ features. Fueled by a relational SQL database, the tool
provides GUIs that lead the manager through a data-driven what-if multi-scenario analysis.
This allows addressing three critical issues affecting the design and customization of WMS in
3PL warehouses. First, it quantifies the short- and mid-term impacts resulting by the
implementation of a new WMS’s feature (Issue 3), leading the manager to identify the proper
management scenario that mostly enhances the efficiency, reduces the storage and picking
costs, and has the shortest payback (Issue 1). Lastly, the DST, behaving as a WMS digital
twin, aids the 3PL in establishing trustworthy added-value relationships with their clients
based on increased awareness and higher visibility (Issue 2) in the era of Industry 4.0. In order
to validate the proposed tool a proof of concept from a real-world warehouse is illustrated. The
tool enables to benchmark seven scenarios resulting from seven different combinations of
logistics choices. Future research developments will focus on extending the boundaries of
analysis, and design new tools aimed to assess the impact of higher information availability
and visibility on the economic and environmental performance of transport and distribution
operations throughout the whole supply chain according to the Internet-of-Things paradigm.
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